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Abstract - The selection spatial harmonics in pseudoperi- 
odic waveguides depending on frequency is studied. Selection 
method is based on coordinated variation of the step and 
phase distribution of elements along the waveguide, which 
provides the em&ant phase velocity of one spatial harmonic 
and destroys other spatial harmonics. The possibility of ap- 
plication of pseudoperiodic folded waveguide for creation of 
powerful broadband TWTs is indicated. 

I. INTRODUCTM)N 

Papers [1, 21 suggest a new class of electrodynamics 
systems (“pseudoperiodic” waveguides) for which it is 
possible to control the spectrum of spatial harmonics and 
modes including their efficient selection in the process of 
amplifying and generating powerful microwave oscillation 
in devices with oversize systems with a large number of 
modes. It is also possible to anticipate expansion of the 
bandwidth in power&d TWTs with pseudoperiodic resona- 
tor slow-wave systems (SWS) in comparison with TWTs 
having conventional resonator SWS, for example coupled- 
cavity systems (CCS). 

The essence of the principle of selection consists 
in employing electrodynamics systems with nonperiodic 
spacing of its elements and a specified relation between 
the step ,& and the field-phase YyI of the elements, which 
makes it possible to select one spatial harmonic or mode 

and suppress the others. The elements in question may be 
slots in a comb-type stmchue (Fig.l), diaphragms in a 
round waveguide, cavities and electron-field interaction 
gaps in CCS etc. Such nonuniform systems may be con- 
sidered as pseudoperiodic, wherein the amplitudes of one 
or several harmonics remain the same as those in the ini- 
tial periodic systems where as the amplitudes of other spa- 
tial harmonics decrease. 

A planar logarithmic spiral or synchronous spirals con- 
sidered in [3] represent examples of pseudoperiodic sys- 
tems. In logarithmic spirals the relationship between the 
step and the length of turn is such that the velocity of the 
radial wave basic spatial harmonic is constant in spite of 
the step variation along the radius. In logarithmic spirals 
all the higher-number spatial harmonics are suppressed 
whereas in synchronous spirals (Figlb) there exists only 
one higher-number spatial harmonic. Planar spiral systems 
we used as ultrawide-band antennas [4] and they can be 
employed as slow-wave structures for TWT [5]. Ciener- 
ally, one can apply the considered principle of selection to 
any type sws. , 

The considered method of selection in slow-wave sys- 
tems is similar to the method of suppressing the side radia- 
tion in nonuniform antenna arrays. However unlined the 
antennas the phase distribution is not specified by external 
sources but is determined by the shape and dimensions of 
the system elements which are to be chosen from the condi- . 

b) 
Fig. I. Pseudoperiodic waveguides: a) comb-type structure; b) synchronous spiral; c) folded waveguide, q=2gg-l and q=2g for 
g-th step. 
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tions of spatial harmonics selection. Such nonuniform 
waveguide system represents a filter whose frequency char- 
acteristic is also determined by the choice of elements and 
the steps of their location. A combined application of the 
conditions of selecting the spatial harmonics and choosing 
the necessary filter characteristics enables to create new 
types of broadband one-wave slow-wave systems. 

A theory of wave selection in pseudoperiodical slow- 
wave systems has been suggested in [6] for fixed fre- 
quency. 
” This paper present relationship for calculation of spatial 
harmonic amplitudes in a pseudoperiodic waveguide de- 
pending on the frequency and phase velocity. Futher- 
more, a dispersion amplitude surface characterizing these 
relationships for pseudoperiodic folded waveguide is cal- 
culated. 

Let us consider a general method of calculating the spa- 
tial harmonics amplitudes in the pseudoperiodic SWC. 
Assume that it the longitudinal electric field distribution 
along the system comprising Q steps of different length L, 
(q = 1,2,..., Q) is given 

~z(wJ) =’ E”f(z,w)exP[iv(z,w)l (1) 

The distribution of the real amplitude f(z,w) and 

phase w(z,o) at frequency o is determined by the type 
of the system (uniform periodic or nonuniform). Applying 
the Fourier transformation, we define the amplitudes 
E(h, w) of spatial harmonics by the relations 

E(h,o) = f jE,(z,cv)exp(-ihz)& 
0 

(2) 

In the general case, amplitudes E(h,o) are continuous 
functions of the wavenumber h and frequency w and dif- 
fer i%om the spectral density only by the factor I, where I is 
the length of the system. Let us represent them as a sum 
over the Q steps of the system: 

(3) 

where v,(w) = y(z, ,a) is the average field phase at the 

qtb step; Mv(h) is the local electron-field interaction co- 

efficient; U, is the rf voltage at the qth step; zI and du are 

the mean coordinate and effective width of the qth gap. 
If the field is constant in the gap, f(z)=&, we have the 

familiar expression 

sin(h “4, 
M,= . “’ 

hdi 
The maximal values of E(h,w) can be obtained, ac- 

cording to (3), for the wavenumbers h = h, that satisfy Q 
conditions: 

h,z,=y,+Znqm, q=l,2 ,..., Q (4) 

where the integer m = 0, Al... determines the number of 
the tield spatial harmonic with the maximal amplitude. 
Physically, conditions (4) mean the in-phase addition of 
the electron radiation from individual gaps where interac- 
tion takes place when electrons move synchronously with 

the mth spatial harmonic to the velocity v, = v, = 
% 

Introducing the field-phase shift p,, = v,,, -v, at the 

qth step and taking into account that L, = z~+, - zp, we 

can write the equivalent conditions of synchronism for 
every step: 

h,(w)L, =~~(w)+Znm, q=l,Z...Q 

In a periodic wateguide L, = L, cpq = p. and v, = qc ; 

therefore, conditions (4) are met for an infinite series of 
spatial harmonics m’ = m when h,. = h, + 27r(m’ - m) / L , 
the difference in their amplitudes being determined only 

by M,(h) 
In a nonuniform waveguide with different steps L, , 

condition (4) can be satisfied for one harmonic by choos- 
ing the appropriate phases v, For h t h, , this condition 

is either not satisfied or holds for the wavenumber spec- 
hum, which is less dense than in a periodic waveguide. 
Thus, selection of spatial harmonics takes place. 

III. PSEuLmPERIODlC FOLDED WA”EG”lDE 

Let us consider the spatial harmonic selection in a pseu- 
doperiodic folded waveguide (Fig. lc) which can be used 
in millimeter wave-range TWTs. Such a waveguide is also 
a good CCS model. 

Assuming the interaction gaps as being similar and the 
wave attenuation as being small we have in (3) M,=M, 
u,3Y. 

Separating the sums of q=Zg and odd q=2g-1 gaps 
(q=1,2 ,.._, G=Q/2), we obtain, 

F(h,w) = ;g = +$ MLg exp(ik., (4 2 hz2,m,l), 
8 1 

where coefficient M, characterizes the interaction in the 

g-tb pair of adjacent gaps. 
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b) 

Fig. 2. Dispersion amplitude surfaces for pseudoperiodic a and periodic b folded waveguide length of G=Q/2=20 steps; 
4n<hL<4ii O<!iL+z c/v,=S. AL/L=O.OS. 

MLg =~[l+cx~(i[yl,,(w)-~~;.,(w)-h(i,~-z*p~,)])] 

The phases y are determined by the wave moving along 

the bent waveguide and having a wavenumber 

h, (a) = m, k = ‘$, k, = Od, where y is cutoff 

frequency. In this case taking into account the phase geo- 
metric turn IT between the adjacent gaps we have: 

vx,-, (w)-kc-, =$ (m)$ -hL,], 

n,(~)-~2g~l(~)=hr(0)(2H,g+D~g)+n, 

where S, =2(H,x+Hz,)+D,,+D2g in the length of 

the loop on the g-th step. 
In a periodic folded waveguide or &S the 1-st spatial 

harmonic is used for TWT operation. The basic forward 
spatial harmonic is absent dew to the subtraction of the 
interaction in the adjacent gaps during the electron motion 
over the system center (when H,,=H,,). Here we shall 
prove the possibility of achieving a large amplitude of the 
basic forward spatial harmonic in a pseudoperiodic folded 
waveguide in broad bandwidth dew to a matched choice of 
the step variation and other waveguide dimensions. The 
phase velocity of this harmonic v, is constant along the 
system if 

To sum up the interaction in adjacent gaps of each step 
at the chosen frequency w. it is necessary that 

h,(o,)(2H,p+D,,)-h,D,,=-R,h,=00 
/ “0 

(6) 

Then the length of the waveguide loop behveen the ad- 
jacent gaps cdmpensates the phase geometric turn at x. 

Considering the linear variation of the step 

L, =L+AL(g-1) (7) 

and constant quantities of D,, - D, , H,r = H, we obtain 

Function F is represented by the dispersion amplitude 
surface [7]. In Fig.2 it is plotted when S/L=5 and 
k, --f 0 (k >> k,, ha = k). The highest of this surface corre- 

sponds to the line of electron synchronism with a basic 
spatial harmonic whose velocity v. does not depended on 
the frequency: 

J,=+ (9) 
“0 

In this case the TWT bandwidth is determined by the 
amplitude variation E(h,w) along this line due to the 

variation of M,(h,w) For the system corresponding to 

831 



Fig.2 the fields of the adjacent gaps are summed up, i.e. 
the condition (6) and ML =I is satisfied at frequency a0 

corresponding to k&=0.6x, h&=3x. Varying the fro- 
quency we obtain an in complete compensation. However, 
as seen from (8) in case of synchronism (9) we have 

[ML I> l/& in a broad bandwidth tamax -““““Km:. = T. 

In this bandwidth it is possible to obtain a high coupling 
impedance behveen the electron beam and the field. 

However in TWT with periodic SWS it is hard to make 
use of such property due to the presence of intensive 
backward spatial harmonics (Fig.2b) and discontinuity of 
SWS bandwidth, which results in self-excitation in the 
TWT and irregularity of the amplification. As seen from 
Fig.2a it is possible to suppress the backward spatial har- 
monics corresponding to hL<O in a pseudoperiodic folded 
waveguide. Moreover, it is possible to avoid the disconti- 
nuity of the bandwidth in specified frequency range simi- 
lar to what takes place in microwave filters. 

The bandwidth of the pseudoperiodic folded waveguide 
is defmed by reflection co&cient r on the waveguide 
curves. To find the bandwidth the reflection coefficient r,, 
was calculated at the waveguide input by means of recur- 
rent relationships. The calculation results show that in a 
periodic folded waveguide the cutoff frequencies corre- 
spond to main peaks of the reflection coefficient r,. and to 
the field phase shifts h&2&4x In a pseudoperiodic 
folded waveguide the main reflection coefficient peaks are 
absent (r,, <0.2), so that the bandwidth increases consid- 
erably. 

IV. CONCLUSION 

The obtained results show that in pseudoperiodic 
waveguides it is possible to combine the following proper- 
ties important for slow-wave systems: selection of an op- 
erating spatial harmonic along with suppression of spuri- 
ous spatial harmonics including backward waves, increase 
of the bandwidth, and load matching. 

These properties of the pseudoperiodic waveguide can 
be used to create powerfol broadband TWTs. 
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