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Abstract - The selection spatial harmonics in pseudoperi-
odic waveguides depending on frequency is studied. Selection
method is based on coordinated variation of the step and
phase distribution of elements along the waveguide, which
provides the constant phase velocity of one spatial harmonic
and destroys other spatial harmonics. The possibility of ap-
plication of pseudoperiodic folded waveguide for creation of
powerful broadband TWTs is indicated.

[. INTRODUCTION

Papers {1, 2] suggest a new class of electrodynamics
systems (“pseudoperiodic” waveguides) for which it is
possible to control the spectrum of spatial harmomics and
modes including their efficient selection in the process of
amplifying and generating powerful microwave oscillation
in devices with oversize systems with a large number of
modes. It is also possible to anticipate expaunsion of the
bandwidth in powerful TWTs with pseudoperiodic resona-
tor slow-wave systems (SWS) in comparison with TWTs
having conventional resonator SWS, for example coupled-
cavity systems (CCS).

The essence of the principle of selection consists
in employing electrodynamics systems with nonperiodic
spacing of its elements and a specified relation between
the step L, and the field-phase ¥, of the elements, which
makes it possible to select one spatial harmonic or mode

and suppress the others. The elements in question may be
slots in a comb-type structure (Fig.1), diaphragms in a
round waveguide, cavities and electron-field interaction
gaps in CCS etc. Such nonuniform systems may be con-
sidered as pseudoperiodic, wherein the amplitudes of one
or several harmonics remain the same as those in the ini-
tial periodic systems where as the amplitudes of other spa-
tial harmonics decrease.

A planar logarithmic spiral or synchronous spirals con-
sidered in [3] represent examples of pseudoperiodic sys-
tems. In logarithmic spirals the relationship between the
step and the length of turn is such that the velocity of the
radial wave basic spatial harmonic is constant in spite of
the step variation along the radius. In logarithmic spirals
all the higher-number spatial harmonics are suppressed
whereas in synchronous spirals (Fig.1b) there exists only
one higher-number spatial harmonic. Planar spiral systems
are used as ultrawide-band antennas [4] and they can be
employed as slow-wave structures for TWT [5]. Gener-
ally, one can apply the considered principle of selection to
any type SWS. p

The considered method of selection in slow-wave sys-
tems is similar to the method of suppressing the side radia-
tion in nonuniform antenna arrays. However unlined the
antennas the phase distribution is not specified by external
sources but is determined by the shape and dimensions of
the system elements which are to be chesen from the condi-
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Fig.1.
g-th step.
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Pseudoperiodic waveguides: a) comb-type structure; b) synchronous spiral; ¢} folded waveguide, q=2g;1 and g=2g for
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tions of spatial harmonics selection. Such nonuniform
waveguide system represents a filter whose frequency char-
acteristic is also determined by the choice of elements and
the steps of their location. A combined application of the
conditions of selecting the spatial harmonics and choosing
the necessary filter characteristics enables o create new
types of broadband one-wave slow-wave systems,

A theory of wave selection in pseudoperiodical slow-

wave systems has been suggested in [6] for fixed fre-
quency.
“ This paper present relationship for calculation of spatial
harmonic amplitudes in a pseudoperiodic waveguide de-
pending on the frequency and phase velocity. Further-
more, a dispersion amplitude surface characterizing these
relationships for pseudoperiodic folded waveguide is cal-
culated.

II. AMPLITUDES OF SPATIAL HARMONICS AND
SYNCHRONISM CONDITION

Let us consider a general method of calculating the spa-
tial hammonics amplitudes in the pseudoperiodic SWC.
Assume that it the longitudinal electric field distribution
along the system comprising () steps of different length L,
{g=1,2,., Q) is given

E.(z,0) = E"f (z,w)expli(z,0)] (1)

The distribution of the real amplitude f(z,®) and
phase w(z,m) at frequency o is determined by the type

of the system (uniform periodic or nonuniform). Applying
the Fourier transformation, we define the amplitudes
E(h,w) of spatial harmonics by the relations

]

E(h,) = % [E. o w)exp(-ihz)dz @)
0

In the general case, amplitudes E(k,@) are continuous

functions of the wavenumber # and frequency @ and dif-
fer from the spectral density only by the factor /, where / is
the length of the system. Let us represent them as a sum
over the Q steps of the system:

Q
E(ha) -7 U, M, (Dexoliy, @)~ hz)], ()

where v (w)=p(z,,@) is the average field phase at the
gth step; M_(h) is the local electron-field interaction co-
efficient; U, is the rf voltage at the gth step; z, and d, are

the mean coordinate and effective width of the gth gap.
If the field is constant in the gap, f{z)=f,, we have the
familiar expression

830
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The maximal values of E(h,@) can be obtained, ac-

cording to (3), for the wavenumbers A=A, that satisfy Q
conditions:

@

where the integer m = 0, £1... determines the number of
the field spatial harmonic with the maximal amplitude.
Physically, conditions (4) mean the in-phase addition of
the electron radiation from individual gaps where interac-
tion takes place when electrons move synchronously with

the mth spatial harmonic to the velocity v, =v, = % .

bz, =y, +2mgm, ¢=12,..0

Introducing the field-phase shift ¢ =y ., —y, at the
gth step and taking into account that L, =z

it~ Zg s WE

q k]
can write the equivalent conditions of synchronism for
every step:

k)L, =g (@)+2zm, ¢=12.0

In a periodic waveguide L =L, =¢, and ¥, =q@;
therefore, conditions (4) are met for an infinite series of
spatial harmonics m'=m when h_ =h +2=x(m' -m)/L,
the difference in their amplitudes being determined only
by M (k).

In a nonuniform waveguide with different steps L, ,
condition (4) can be satisfied for one harmonic by choos-
ing the appropriate phases g, . For h# h_ , this condition
is either not satisfied or holds for the wavenumber spec-
trum, which is less dense than in a periodic waveguide.
Thus, selection of spatial harmonics takes place.

II1. PSEUDOPERIODIC FOLDED WAVEGUIDE

Let us consider the spatial harmonic selection in a pseu-
doperiodic folded waveguide (Fig.1c) which can be used
in millimeter wave-range TWTs. Such a waveguide is also
a good CCS model.

Assuming the interaction gaps as being similar and the
wave attenuation as being small we have in (3) M,=M,
U,2U.

Separating the sums of ¢=2g and odd g=2g-1 gaps
(g=1,2,..., G=0/2), we obtain,

Fiho) zimﬁi% exp(ilyy, (@)= hzy, 1),

G2UM/]
where coefficient M, characterizes the interaction in the
g-th pair of adjacent gaps.



Fig. 2.~ Dispersion amplitude surfaces for pseudopetiodic a and periodic b folded waveguide length of G=0/2=20 steps;

d<hL<dxz O<kL<m c/v;=5, AL/L=0.05.

M, = %[l + exp(i[r,ﬂzg (e0)- Wage (60) - h(zgg “Zyg ):I)]

The phases  are determined by the wave moving along
the bent waveguide and having a wavenumber

hs(a))=,}k2—kf,k=%,ks =w%, where @ is cutoff

frequency, In this case taking into account the phase geo-
metric turn 7 between the adjacent gaps we have:

il [h, (w)S, -AL, J,

ng (w)_WZrI ((u) = h: (m)(zng +Dlg)+ﬁ”
where S, :2(H1g+H2g)+D,g+D2g in the length of

the loop on the g-th step.

In a periodic folded waveguide or CCS the 1-st spatial
harmonic is used for TWT operation. The basic forward
spatial harmonic is absent dew to the subtraction of the
interaction in the adjacent gaps during the electron motion
over the system center (when H;,=H;;). Here we shall
prove the possibility of achieving a large amplitude of the
basic forward spatial harmonic in a pseudoperiodic folded
waveguide in broad bandwidth dew to a matched choice of
the step variation and other waveguide dimensions. The
phase velocity of this harmonic v, is constant along the
system if
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To sum up the interaction in adjacent gaps of each step
at the chosen frequency w, it is necessary that
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[12)
hs(wu)(zng+Dlg)_h0Dlg =-m,hy = DVD (6)
Then the length of the waveguide loop between the ad-
jacent gaps compensates the phase geometric turn at .
Considering the linear variation of the step

L, =L+AL(g-1) Q)

and constant quantities of D,, =D, H,, = H, we obtain

F(hw)= %iexp{i[hs (a))—i——h} x
g=Il

xL(g—I){H%(gJ)]}, (8)

|

Function £ is represented by the dispersion amplitude
surface [7]. In Fig2 it is plotted when S/L=3 and
k., — 0 (k>>k,, h, = k). The highest of this surface corre-

sponds to the line of electron synchronism with a basic
spatial harmonic whose velocity v, does not depended on
the frequency:
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In this case the TWT bandwidth is determined by the
amplitude variation E(h,@) along this line due to the

variation of M, (h,). For the system corresponding to



Fig.2 the fields of the adjacent gaps are summed up, i.e.
the condition (6) and M, =1 is satisfied at frequency @,
corresponding to k,L=0.6m, h,L=3m. Varying the fre-
quency we obtain an in complete compensation. However,
as seen from (8) in case of synchronism (9) we have

|M L| > 1/ V2 in a broad bandwidth (s - mmi%

min

-

=2,

In this bandwidth it is possible to obtain a high coupling
impedance between the electron beam and the field.

However in TWT with periodic SWS it is hard to make
use of such property due to the presence of intensive
backward spatial harmonics (Fig.2b) and discontinuity of
SWS bandwidth, which results in self-excitation in the
TWT and irregularity of the amplification. As seen from
Fig.2a it is possible to suppress the backward spatial har-
monics corresponding to AL<0 in a pseudoperiodic folded
waveguide. Moreover, it is possible to avoid the disconti-
nuity of the bandwidth in specified frequency range simi-
lar to what takes place in microwave filters.

The bandwidth of the pseudoperiodic folded waveguide
1s defined by reflection coefficient /" on the waveguide
curves. To find the bandwidth the reflection coefficient 7,
was calculated at the waveguide input by means of recur-
rent relationships. The calculation results show that in a
periodic folded waveguide the cutoff frequencies corre-
spond to main peaks of the reflection coefficient [, and to
the field phase shifts #l2Z2z4x In a pseudoperiodic
folded waveguide the main reflection coefficient peaks are
absent (I, <0.2), so that the bandwidth increases consid-
erably.

IV, CONCLUSION

The obtained results show that in pseudoperiodic
waveguides it is possible to combine the following proper-
ties important for slow-wave systems: selection of an op-
erating spatial harmonic along with suppression of spuri-
ous spatial harmonics including backward waves, increase
of the bandwidth, and load matching.
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These properties of the pseudoperiodic waveguide can
be used to create powerful broadband TWTs.
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